Analisis Transformasi Lahan Menggunakan Citra Satelit Landsat Multi Temporal

Authors

  • Laode Muhamad Irsan Program Studi Pendidikan Geografi, Universitas Halu Oleo
  • Nur Hasanah Program Studi Pendidikan Geografi, Universitas Halu Oleo
  • Rahma Musyawarah Program Studi Pendidikan Geografi, Universitas Negeri Makassar
  • Ema Hermawati Garusu Program Studi Pendidikan Geografi, Universitas Halu Oleo
  • Septianto Aldiansyah Program Studi Pendidikan Geografi, Universitas Halu Oleo

DOI:

https://doi.org/10.36709/jppg.v9i1.203

Keywords:

Kendari city, spectral approach, land transformation, urban index

Abstract

Kendari City as a center for industrial, trade, and service activities as well as a provider of urban facilities has become an attraction for residents to move and live, thus having an impact on increasing land transformation. This research aims to assess the capability of remote sensing satellite imagery, especially Landsat 8 Oli Imagery for multi-temporal monitoring of Kendari city land transformation in 2010-2021. The research method used is survey research with the Urban Index (UI). The research results show that the multi-temporal land transformation of the city of Kendari in 2010-2021 using a spectral approach on Citra Landsat shows that the city of Kendari is experiencing an increase in the amount of undeveloped land and conversely, there is a decrease in the amount of undeveloped land. The total area of built-up land in 2010 and 2021 is 6,670 ha and 11,182 ha, respectively. The interpretation results have an accuracy of 85% with a kappa value of 69% (strong). Thus, the results of the interpretation have a strong relationship with the results of checking in the field

References

Adinata, I., dan Sigit, A. A. (2020). Analisis Perubahan Penggunaan Lahan di Kecamatan Colomadu Kabupaten Karanganyar Tahun 2009 dan 2019. Skripsi. Universitas Muhammadiyah Surakarta. Surakarta.

Affan, F. M. (2014). Analisis Perubahan Penggunaan Lahan untuk Permukiman dan Industri dengan Menggunakan Sistem Informasi Geografis (SIG). Jurnal Ilmiah Pendidikan Geografi, 2(1), 49-60.

Aldiansyah, S., Mannesa, M. D. M., dan Supriatna, S. (2021). Monitoring of Vegetation Cover Changes with Geomorphological Forms Using Google Earth Engine in Kendari City. Jurnal Geografi Gea, 21(2), 159-170.

Aldiansyah, S., dan Saputra, R. A. (2023). Comparison of Machine Learning Algorithms for Land Use and Land Cover Analysis using Google Earth Engine (Case Study: Wanggu Watershed). International Journal of Remote Sensing and Earth Sciences (IJReSES), 19(2), 197-210.

Aldiansyah, S., dan Wibowo, A. (2022). Aplikasi Metode Spatial Multi Criteria Analysis untuk Pengembangan Kawasan Permukiman (Studi Kasus: Re-Evaluasi RTRW Provinsi Sulawesi Tenggara). Jurnal Geografi, Edukasi dan Lingkungan (JGEL), 6(2), 136-152.

As-Syakur, A. R., Adnyana, I. W. S., Arthana, I. W., dan Nuarsa, I. W. (2012). Enhanced Built-up and Bareness Index (EBBI) for Mapping Built-up and Bare Land in An Urban Area. Remote sensing, 4(10), 2957-2970.

As-Syakur A. R, Suarna I. W, Adnyana I. W. S, dan Rusna I.W. (2010). Studi Perubahan Penggunaan Lahan di DAS Badung. Jurnal Bumi Lestari, 10(2):200-207.

Badan Pusat Statistik. (2021). Kota Kendari Dalam Angka 2022. Diakses 24 Desember 2023, dari https://kendarikota.bps.go.id/

Bashit, N., Prasetyo, Y. dan Sukmono, A. (2019) Kajian Perkembangan Lahan Terbangun Kota Pekalongan Menggunakan Metode Urban Index (UI). Elipsoida: Jurnal Geodesi dan Geomatika, 2(2), 12-18.

Bouhennache, R., Bouden, T., Taleb, A. A., & Chaddad, A. (2015). Extraction of Urban Land Features from TM Landsat Image Using the Land Features Index and Tasseled Cap Transformation. Recent Advances on Electroscience and Computers, 142-147.

Chavez, P. S. (1996). Image-Based Atmospheric Corrections-Revisited and Improved. Photogrammetric Engineering and Remote Sensing, 62(9), 1025–1035.

Danoedoro, P. (2012). Pengantar Penginderaan Jauh Digital. Yogyakarta: Penerbit Andi.

Irsan, L.M., Murti, S.H. dan Widayani, P. (2019) Estimasi Produksi Jagung (Zea Mays L.) dengan Menggunakan Citra Sentinel 2A di Sebagian Wilayah Kabupaten Jeneponto Provinsi Sulawesi Selatan. Jurnal Teknosains, 8(2),93-104. https://doi.org/10.22146/teknosains.36885.

Karanam, H. K., dan Neela, V. B. (2017). Study of Normalized Difference Built-up (NDBI) Index in Automatically Mapping Urban Areas from Landsat TN Imagery. International Journal of Engineering, Science and Mathematics, 8, 239-48.

Kerle N, Klaus T, Gerrit, C. H., dan Lucas L. F. (2004). Principles of Remote Sensing, Nedherlands: ITC.

Knox, P.L. dan Pinch, S. (2013). Urban Social Geography: An Introduction. Sixth Edition. London New York: Routledge, Taylor & Francis Group.

Muhaimin, M., Fitriani, D., Adyatma, S., dan Arisanty, D. (2022). Mapping Build-up Area Density using Normalized Difference Built-Up Index (NDBI) and Urban Index (UI) Wetland in The City Banjarmasin. In IOP Conference Series: Earth and Environmental Science (Vol. 1089, No. 1, p. 012036). IOP Publishing.

Paca, V. H. D. M., Espinoza-Dávalos, G. E., da Silva, R., Tapajós, R., dan dos Santos Gaspar, A. B. (2022). Remote Sensing Products Validated by Flux Tower Data in Amazon Rain Forest. Remote Sensing, 14(5), 1259. https://doi.org/10.3390/rs14051259.

Prihatin, B. N. (2015). Alih Fungsi Lahan di Kota Bandung dan Yogyakarta. Sekretaria jenderal DPR RI Jakarta

Purwandhi, F. S. H., and Santoso, T. B. (2008). Pengantar Interpretasi Citra Penginderaan Jauh Edisi kedua, Lembaga Penerbangan dan Antariksa Nasional dan Universitas Negeri Semarang. Semarang.

Rahmi, K. I. N., Ali, A., Maghribi, A. A., Aldiansyah, S., dan Atiqi, R. (2022). Monitoring of Land Use Land Cover Change Using Google Earth Engine in Urban Area: Kendari City 2000-2021. In IOP Conference Series: Earth and Environmental Science (Vol. 950, No. 1, p. 012081). IOP Publishing.

Rustiadi E, Saefulhakim S., dan Panuju D. R. (2009). Perencanaan dan Pengembangan Wilayah. Yayasan Obor Indonesia, Crestpent Press. Jakarta.

Salomonson, V., Hall, D., Barker, J., dan Kaufmann, Y. (1994). Terrestrial Remote Sensing Science and Algorithms Planned for EOS/MODIS. International Journal of Remote Sensing, 15(17), 3587-3620. https://doi.org/10.1080/01431169408954346.

Sinha, P., Verma, N. K., dan Ayele, E. (2016). Urban Built-up Area Extraction and Change Detection of Adama Municipal Area using Time-Series Landsat Images. International Journal of Advanced Remote Sensing and GIS, 5(8), 1886-1895.

Wijaya, A., dan Susetyo, C. (2017). Analisis Perubahan Penggunaan Lahan di kota Pekalongan Tahun 2003, 2009, dan 2016. Jurnal Teknis ITS, 6(2), 417–420.

Wulansari, H. (2017). Uji Akurasi Klasifikasi Penggunaan Lahan dengan Menggunakan Metode Defuzzifikasi Maximum Likelihood Berbasis Citra ALOS AVNIR-2. BHUMI: Jurnal Agraria dan Pertanahan, 3(1), 98. https://doi.org/10.31292/jb.v3i1.96

Yüksel, A., Akay, A. E., dan Gundogan, R. (2008). Using ASTER Imagery in Land Use/Cover Classification of Eastern Mediterranean Landscapes According to CORINE Land Cover Project. Sensors, 8(2), 1237-1251.

Published

2024-01-02

How to Cite

Irsan, L. M., Hasanah, N., Musyawarah, R., Garusu, E. H., & Aldiansyah, S. (2024). Analisis Transformasi Lahan Menggunakan Citra Satelit Landsat Multi Temporal. Jurnal Penelitian Pendidikan Geografi, 9(1), 34–43. https://doi.org/10.36709/jppg.v9i1.203

Issue

Section

Articles